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ABSTRACT 

It is proved that every centrally symmetric simple closed curve on the 
boundary of a centrally symmetric convex body in a three-dimensional 
linear space possesses an inscribed concentric afi~nely regular hexagon. This 
result is used to settle affirmatively a conjecture in [2] about the metric structure 
of the unit spheres of three-dimensional normed space. 

The preceding abstract will do for an introduction. The idea of applying a 
topological device such as is used in Theorem 1 to the proof  of the conjecture 
was inspired by a similar attempt by L. Danzer (unpublished notes), who had 

arrived at the problem independently. The author is indebted to M. Sebastiani 
for help with the algebraic topology in the proof  of  Theorem 1. 

1. Inscribed hexagons. Let E be a real linear space with dim E = 3, provided 

with the natural Hausdorff topology. In this paper, a simple closed curve is the 
homeomorphic image of  a circle; a parametrized curve in a subset F of E is a 
continuous function f :  [ct, p] -~ F. 

1. THV~ORE~t. Let K be a convex body (compact convex set with non-empty 
interior) in E, with - K  = K, and let OK be its boudary. I f  C c OK is a simple 
closed curve such that - C  = C, then C contains the vertices of an a~nely 

regular hexagon centred at O. 

Proof. 1. It is sufficient to show that there exists p e C such that C n  ( C -  p) ~ ~ :  
for if q is in the non-empty intersection, p, p + q, q, - p ,  - p  - q, - q  are the 

required vertices. We shall therefore assume 

(1) c c~ ( c  - 1,) = ~ ,  p e c 

and derive a contradiction. 
2. By the Jordan Curve Theorem, OK\C consists of  two components;  the 

mapping u ~ - u: 0K -~ OK maps C onto itself; since it is orientation-preserving 
on C and orientation-reversing on OK, it interchanges the components of  OK\C, 

which may therefore be called A and - A .  
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For  every parametrized curve f :  [0 ,1]  --) E\C with endpoints f (0) , f (1)  e E\aK 
the intersection numbers modulo 2 i(f, A), i(f ,  - , 4 ) ,  i(f, OK) are well defined and 
constant under homotopies of  such curves; they satisfy 

(2) i(f ,  A) 4- i(f,  - A) = i(f,  aK); 

the second member is 0 or 1 according as the endpoints of f are in the same 
component or different components of  E/0K.  

Indeed, consider the commutative diagram 

HI(E \ C, E \ OK) +-+ n2c(A tO --A) = H{(A) ~ H2(--A) *-+ Za ~ Z2 

Ht(E, E\ OK) *-~ H2(0K) ~ Z2 

where the coefficients are in Z2, the subscript e denotes compact support, the left-hand horizon- 
tal arrows indicate the Alexander-Pontrjagin duality [I], and all the mappings are natural. The 
image of the homology class of a parametrizod curve as above under the upper [lower] row of 
isomorphisms is, by definition, l(f, A) (~ i(f, --A) [i(f, 0K)]. The preceding statements follow. 
Intersection numbers modulo 2 are used to avoid ¢luestions of orientation. 

3. There exists a parametrized curve h: [0,2]-- ,  0K such that h ( [ 0 , 2 ] ) =  C, 
h is injective except for h(2) = h(0), and h(t + 1) = - h(t), 0 < t < 1. For each u, 
0 < u < 1, we define 

f . ( t)  = h(t + u) - h(u),  0 < t < 1. 

Now (1) implies that f . ( t)  ¢ C for all u, t, 0 =< u, t < 1. Therefore f .  is a para- 
metrized curve in E \C  for every u; its endpoints are f.(0) = 0 and f.(1) = h(1 + u) 
-h(u) = - 2 h ( u ) e 2 0 K ,  so that they belong to different components of  E\OK; 
and the mapping u -+f .  is a homotopy. 

Consequently, using part 2 of  the proof, u ~ i ( f . ,A)  is constant, and therefore 

(3) i ( f  D A) = i(fo, A); 

by (2) and the location of  the endpoints, 

(4) i ( fo,A) + i(fo, - A) = i(fo, OK) = 1. 

Finally, f l ( 0  = h(t + 1) - h(1) = - h(t) = - h(t) + h(0) = fo(t), 0 < t < 1; central 
symmetry then implies 

(5) i ( f , ,  A) = i(fo, - A). 

Using (3), (5), (4) in succession, we obtain the contradiction 

0 = i(fo, A) + i(fo, A) = i(fo, A) + i ( f , ,  A) = i(fo, A) + i(fo, - A )  = 1. 

Acareful perusal of  the proof  shows that the assumption that K is a symmetric 
convex body may be replaced by the weaker assumption that K is a symmetric 

compact set that is star-shaped at the interior point 0. It is then possible to state 
Theorem 1 thus generalized in a way that makes no explicit mention of  K. For  
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this purpose, call a set F c Esimple at 0 if every ray issuing from 0 meets F in at 
most one point. 

2. THEOREM. If C c E is a simple closed curve that satisfies - C  = C and 
is simple at O, it contains the vertices of an affinely regular hexagon centred at O. 

Proof. There exists a symmetric compact K,  star-shaped at the interior point 0, 
such that C c DK. The conclusion then follows from the generalized form of 
Theorem 1 discussed above. 

We sketch a construction for K. Let II II be a norm in E, and let E be the 
corresponding unit ball. The mapping sgn:x- lixll-lx: when 
restricted to the compact set C, is continuous and injective (since C is simple at 0), 
and hence reduces there to a homeomorphism a of C onto sgn(C), a simple 
closed curve in OX. Clearly, - s g n ( C ) =  sgn(C) and t r ( - x )  = -  tr(x), x E C. 
As in the proof of Theorem 1, dE \sgn (C) consists of two components, say F and 
- F; the  Jordan Curve Theorem further implies that there exist homeomorphisms 
of  F w sgn (C) and of - F u sgn (C) onto a euclidean plane disk that map sgn (C) 
onto the boundary. 

For each p E sgn (C) we set q~(p) = II ~- l(p) II, so that 

(6) q~(-p) = ~b(p) > 0 

for all these points. On account of the homeomorphisms just mentioned, 
can be extended to a continuous positive-valued function defined on all aY.; 

we may assume that it satisfies (6) everywhere, since otherwise we should replace 
~b(p) by ½(~b(p) + q~(-p)), thus leaving the function unchanged on sgn (C). 

It may then be verified directly that the star-shaped set K = {0} u {x e E \{0}: 
Ilxll z  (sgnx)} satisfies all the requirements. 

When C is contained in a plane, each point of C is obviously a vertex of some 
inscribed aflinely regular hexagon. The referee suggests the query: Are Theorems 1 
and 2 best possible in this sense in the non-planar case? 

2. The girth of spheres. Let X be a finite-dimensional normed real linear 
space with norm II !1, and let Y~ be its unit ball, with the boundary 0Y,. In [2] we 
defined the girth of Z to be 2re(X), where re(X)= m i n { 6 ( - p , p ) : p e 8 Z }  and 
(5 denotes the inner metric of dY induced by the norm. In [2, Lemma 5.1] it is 
shown that the minimum is attained, and that 

(7) 2re(X) = min{l(C): C a rectifiable simple closed curve in 0X, with - C = C}, 

where l(C) denotes the length of C. 

3. THEOREM. l f  d i m X  = 3, then re(X) >= 3. 

Proof. Let C be a rectifiable simple closed curve in OX with - C = C. By 
Theorem 1, C contains the vertices of an attinely regular hexagon centred at 0; 
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let these be Pl, P2, P3, P4, P5, t76, in the order in which they appear along C for 
some given orientation and starting point. 

Now vertices that are consecutive in this ordering need not be adjacent in the 
hexagon; however, tl p, ll = 1, i - -  1 , , 6 ;  and for any distinct i , j  == 1,.. . ,6, 
either p~, pj are adjacent and p j - p ,  = 1, or - p i ,  Pj are adjacent and 
[ p , - p i U  > 2p~ - p ; - ( - p , )  > 2 - 1 = 1 ,  or p,,p~ are opposite and 

I I I p ~  p, = 2, so that II ~ - p, II => 1 in any case. 
Setting po=P6 ,  we find z(c)>~:~llp~-p~_lll__>6, and the conclusion 

follows from (7). 
In [2] we further defined M(X) = max {6(-  p, p): p e dye}, D(X) = max {6(p, q): 

p,q ~ ~E), as well as for n = 2,3, ..-, 

m,(n) = min {re(X): dim X = n}, M,(n) = min {M(X): dim X = n}, 

D,(n) = rain {D(X): dim X = n} 

and the corresponding maxima; all are attained, by [-2, Theorem 8.2]. 

4. THEOREM. m,(3) = M,(3) = D,(3) = 3. 

Proof. By Theorem 3, 3 < m,(3); trivially, m,(3) < M,(3); and [2, Theorem 
8.5, (b)] gives M,(3) = D,(3) < 3. 

The equality m,(3) = 3 was the purport of [2, Conjecture 9.4, (b)]; cf. also 
[3, p. 82]. 
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